View This Site In Your Own Language

Quick Review of Machine Learning Algorithms





Quick Review of Machine Learning Algorithms
There are 3 types of Machine Learning Algorithms:
[1] Supervised Learning: target_variable = f(independent_variables)
o   Given target/dependent variable
o   Independent variables
o   Training is run until desired level of accuracy
Examples of Supervised Learning:
·         Regression
·         Decision Tree
·         Random Forest
·         KNN
·         Logistic Regression
[2] Unsupervised Learning: clustering population in different groups
o   Target/independent variable is not given
Examples of Unsupervised Learning:
·         Apriori algorithm
·         K-means
[3] Reinforcement Learning: semi-supervised learning
The machine trains itself continually using trial and error to an exposed environment.
Example of Reinforcement Learning:
·         Markov Decision Process
                           Used Library for different machine learning algorithms
v  Linear Regression
from sklearn.linear_model import LinearRegression
v  Logistic Regression
from sklearn.linear_model import LogisticRegression
v  Decision Tree
from sklearn.tree import DecisionTreeClassifier
v  SVM
from sklearn.svm import SVC
v  Naive Bayes
from sklearn.naive_bayes import GaussianNB
v  KNN
from sklearn.neighbors import KNeighborsClassifier
v  K-Means
from sklearn.cluster import KMeans
v  Random Forest
from sklearn.ensemble import RandomForestClassifier
v  Dimensionality Reduction Algorithms
from sklearn.decomposition import PCA
v  Gradient Boosting algorithms
Ø  GBM
from sklearn.ensemble import GradientBoostingClassifier

Ø  XGBoost
from xgboost import XGBClassifier
Ø  LightGBM
Ø  CatBoost
from catboost import CatBoostRegressor



Quick Review of Machine Learning Algorithms Quick Review of Machine Learning Algorithms Reviewed by Ikram on 11/18/2019 05:25:00 AM Rating: 5

No comments:

Powered by Blogger.